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Abstract

The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the complex eigenvalues of
the non-proportional damping structures. By combining the interval mathematics and the finite element analysis, the
mass matrix, the damping matrix and the stiffness matrix were represented as the interval matrices. Firstly, with the
help of the optimization theory, we presented an exact solution—the vertex solution theorem, for determining the exact
upper bounds or maximum values and exact lower bounds or minimum values of complex eigenvalues of structures,
where the extreme values are reached on the boundary of the interval mass, damping and stiffness matrices. Then,
an interval perturbation method was proposed, which needs less computational efforts. A numerical example of a seven
degree-of-freedom spring-damping-mass system was used to illustrate the computational aspects of the presented vertex
solution theorem and the interval perturbation method in comparison with Deif’s method.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Complex eigenvalues estimation of non-proportional damping structures with uncertainty is very vital to
the design and analysis of structures used in many engineering problems. All structural analysis and design
problems involve imprecision or approximation or uncertainty. Analysis and design under uncertainty
depend on representation of what is known about the uncertain information. The choice of a model of
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uncertainty depends on the type and quantity of information available. There are three classes of uncertain
models (Li and Liao, 2001), and they are: probabilistic approach, fuzzy theory and interval analysis. If the
uncertain variables are described as random variables or random process with a specified probability dis-
tribution, the probabilistic approach can be used. In fuzzy theory, the uncertainty is interpreted as the de-
signer and analyst’s choice to use a particular value for the uncertain variable, if a preference function is
used to describe the desirability of using different values within the some range. In interval analysis, the
uncertain variables are denoted by a simple range or set, i.e. interval vector. It can be seen that when infor-
mation about uncertain variables in the form of a preference or probability function is not available, inter-
val analysis can be used most conveniently.

In many dynamic problems of structural engineering, one often encounters the following problem: Given
two real symmetric non-positive definite matrices 4 and B of order n, determine the value of a scalar 4
which satisfies the equation Au = ABu, which is called the generalized complex eigenvalue problem. A is
called the eigenvalue of matrix pair 4 and B, and u is the associated eigenvector. The eigenvalue /1 is gen-
erally to be a complex number 4 = 4, +v/—1 Ay, where /, and A, are respectively the real and imaginary
parts of the complex eigenvalue A for identical structural system. However, experiments have shown that
complex eigenvalue varies in uncertainty because the elements of the matrices 4 and B can be neither meas-
ured exactly nor calculated exactly. The incomplete information about the elements of the matrices 4 and B
is a result of errors in observation, measurement errors, change on operating conditions ageing, mainte-
nance-induced errors, etc. In such circumstance we do not know the elements of the matrices 4 and B ex-
actly; instead, we only know the ends of intervals in which the elements of the matrices 4 and B are
confined. Thus, the complex eigenvalues are uncertain variables whose uncertain properties are determined
by the uncertain elements of the matrices 4 and B.

When the matrices 4 and B are interval uncertain (Moore, 1979; Alefeld and Herzberger, 1983; Deif,
1991), ie., 4'=[4,4] = (a};) = ([a;,ay]) and B' = [B,B] = (b};) = ([b;,b;]). the complex eigenvalues
A =2, 4+/—14, will be interval complex numbers 2} = i + \/—_lill.y, where A, = [4, irls 4y, = [Ays 2y,
i=12,...,n

In this study, we will deal with the generalized interval complex eigenvalue problem of real symmetric
but non-positive definite interval matrices.

The research on the interval eigenvalue problem has begun to emerge in recent years. Extensive re-
searches were investigated by control engineers (Bialas, 1983; James, 1984) from the view point of stability
and robustness analysis. Hudak (1984) investigated ways of finding a constant matrix such that the certain
constraint condition with the interval matrix given. Rohn (1987) studied the symmetric interval matrix and
ended up with the formulae when the wide of interval matrix has rank one. Hollot and Bartlett (1987) ver-
ified that the spectrum of eigenvalues of an interval matrix family was found to depend of finding a constant
matrix under the constraint with the given interval matrix. Based on the invariance properties of the char-
acteristic vectors’ entries, Deif (1991) obtained the solution theorem for interval matrix. Qiu et al. (1995)
extended Deif’s solution theorem for the standard interval eigenvalue problem of real symmetric interval
matrices to the generalized interval eigenvalue problem, and presented the interval perturbation method,
semi-definite solution theorem and the inclusion theorem.

However, the mentioned-above methods are all used to solve the standard or generalized real eigenvalue
problem. Deif (1991) established the solution theorem for standard and generalized interval complex eigen-
value problem; nevertheless, there existed many difficulties, such as: it is quite difficult how to determine the
invariance properties of the eigenvectors’ components in the interval matrix; large computational efforts.

In this paper, firstly, by virtue of interval mathematics and the optimization theory, an exact solution meth-
od—the vertex solution theorem, was proposed for determining the exact maximum values or the upper
bounds and the minimum values or the lower bounds on the generalized interval complex eigenvalues of struc-
tures with uncertain-but-bounded parameters; then an efficient interval perturbation method was presented.
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In the following, first the problem formulation of the generalized interval complex eigenvalue of
non-proportional damping structure with uncertain-but-bounded parameters is given in Section 2. Then
in Section 3 the vertex solution theorem for the generalized interval complex eigenvalue problem is pre-
sented, followed by the interval perturbation method in Section 4. An example of a seven degree-of-free-
dom spring-damping-mass system is used to illustrate the application of the presented methods in
Section 5. Finally, in Section 6 a conclusion is given.

2. Problem formulation

Let us consider the differential equation of motion of systems with n degrees of freedom (Miieller and
Schiehlen, 1985)

My(1) + Ci1) + Ky(1) = O(¢) (1)
where M = (my) is the mass matrix; C = (¢;) is the damping matrix; K = (k;) is the stiffness matrix, and
0O(t) = (¢gA?)) is the external load vector. The matrices M, C and K are all symmetric, and are n X n-dimen-
sional matrices. y(¢) = (y;(¢)), y(¢t) = (3,(¢)) and p(¢t) = (,(¢)) are the n-dimensional displacement, velocity,
and acceleration vectors.

The dynamics problem associated with Eq. (1) can be reduced to a standard form by a method developed
by Meirovotch (1980). In the following we will give a brief description of the method.
Introducing the 2n-dimensional state vector

x(1) = ()" 3(0)")" 2)
and the 2n-dimensional excitation vector
F(r) = (Q(n'0")" 3)
Eq. (1) can be written in the form
A5 (1) + Bx(f) = F(¢) (4)
where
cC M K 0
(1) 55 )
M 0 0 M

in which 4 and B are 2n X 2n-dimensional real symmetric non-positive definite matrices.
The generalized complex eigenvalue problem corresponding to Eq. (4) has the following form:

Ax = ABx (6)

Obviously, the solutions to Eq. (6) consist of 2n complex eigenvalues 4; = 4,; + \/—_l/ly,- and 2n complex
eigenvectors x; = x,; + \/f—lxy,». Because the matrices 4 and B are real symmetric, if Z; = 4, + ﬂiy, is
an eigenvalue, then its complex conjugate 4, = 4,; — \/:‘l/ly,- is also an eigenvalue, and a similar statement
can be made concerning the eigenvectors.

The complex eigenvalues given by Eq. (6) are often assumed to be constant for identical structural
systems. However, experience and experiments have shown that these values vary uncertainly because in
reality the physical and geometric properties of the elements in 4 and B can be neither measured
exactly nor manufactured exactly. In this paper, we assume that the uncertainties in 4 and B are bounded,
and the uncertain but bounded matrices 4 and B can be written as the following matrix inequality form

4<A4<4, B<B<B (7a)
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or the element form

a; < a; <ay b;<b;< b

by Lj=1,2,....n (7b)
in which 4 = (a;;) and 4 = (), respectively, are the upper bound matrix and the lower bound matrix of the
uncertain matrix A4, and B = (Eij) and B = (b;), respectively, are the upper bound matrix and the lower
bound matrix of the uncertain matrix B.

Usually, it is very difficult to solve the generalized complex eigenvalue problem Eq. (6) under the con-
dition of the matrix inequality constraints Egs. (7).

We number the real parts and imaginary parts of the complex eigenvalues of the matrix pair (4, B) in
non-descending order

/lrl < /er < e < /ernv Afyl < )LyZ < e < /lyZn (8)

In this paper, we shall study a method for computing the complex eigenvalues of Eq. (6) subjected to the
constraints Eqs. (7), in which the elements @, and by, i,j=1,2,...,2n, of the matrix pair 4 and B are not
known precisely. The incomplete information about the elements of matrices 4 and B is a result of meas-
urement errors, etc. In most cases we only know the ends of intervals in which the elements of the matrices
A and B are confined.

In terms of the interval matrix notation (Moore, 1979; Alefeld and Herzberger, 1983), the constraint
condition Eq. (7a) can be expressed as

AcAd, BeB (9a)
and

aj € aj; = [a;,a;], by € b= [by,byl, i,j=1,2,...,2n (9b)

lj?

in which 4" = [4,4] and B' = [B, B| are the symmetric interval matrices.

There are many applications in Eq. (6) with the constraint conditions Egs. (7), where the elements of the
matrices 4 and B are not precisely known. If we known an interval matrix A" that is bounding 4 and an
interval matrix B' that is bounding B, the generalized complex eigenvalue problem can be expressed as

A'x = JB'x (10)

which is called the generalized interval complex eigenvalue problem. Because A" and B' are defined as inter-
val matrices, the associated real parts and imaginary parts of their complex eigenvalues similarly constitute
interval variables

A =04V = [ 2]+ V=14, ) = (4) = (A +V-12}) (11)
where

[) )rta ;“I [ﬁym/“w’L la]: 1a2a"'72n (12)

The interval eigenvalue solutions to Eq. (10) will contain the eigenvalue solutions to Egs. (6) and (7). The
real parts and the imaginary parts of the complex eigenvalue solutions to Egs. (6) and (7) are denoted by the
following sets:

I,={d:) R, Ax= () +V—14)Bx, A=A", B=B", Ac 4", BcB"} (13)

and

r,= {/ly A ER, Ax= (A +V—12)Bx, A=A", B=B", Ac A, Be B'} (14)
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We should stress that I', and I'y, may be generally of complicated geometric shapes so that it may
usually impractical to try to solve them. Instead, it is a common practice to seek the interval vector of
the real part A =[4,4]=(2.) containing I, and the interval vector of the imaginary part
i; = [4, 1) = ();) containing I',, where the interval vectors /. and /I_IV have the narrowest possible interval
components.

When endeavoring to solve Eq. (10), we are, in fact, able to determine an interval vector of the real part
A =1[4,%4]=(2) and an interval vector of the imaginary part )v; = Ay Ay) = (i;,), which all have
the smallest widths of intervals enclosing all possible complex eigenvalues A € C*", satisfying Ax = /Bx,
when A4 and B assume all possible combinations inside 4" and B'. In other words, we seek a multi-dimen-
sional rectangle 2' = /! + \/—_M; =4y 1] + V-1 [Ays 2] = (A) = (AL + \/—_1/1},,.) containing all eigenvalues
of Egs. (6) and (7).

In this study, we shall present a solution of the generalized interval complex eigenvalue problem Eq. (10)
which serves a wide range of applications. The basic problem to be solved herein as follows: Given the
central matrices A° = (4 +4)/2 and B° = (B+ B)/2 of A' = [4,4] and B' = [B, B], respectively, and the
deviation amplitude matrices A4 = (4 — A)/2 and AB = (B — B)/2 of A' = [4,4] and B' = [B,B], find a
multi-dimensional rectangle containing the set of eigenvalues of Eq. (10) for interval matrices
A'=[4,4] = {4 : |4 — A°| < A4} and B' = [B,B] = {B : |B — B°| < AB}. In other words, we seek the inter-
val complex eigenvalues or the upper and lower bounds on the real parts and the imaginary parts of the
interval complex eigenvalues or the set of Eq. (10), i.e.

A=AV =1y = [ 2]+ V=14, ) = (&) = (2 + V=14y) (15)
where
D = Vi Tty Py = Ly 2l 65J =1,2,...,2n (16)
in which
Ti= max {1:((4,B)}, 4,= min {2:((4,B))}, i=12,..,2n (17)
AeA" BeB! AeA' BeB!
and
Zy,v = max {4:({(4,B))}, iy,. = min {4:((4,B))}, i=1,2,...,2n (18)
AeAd' BeB! AeA' BeB!
where
i xTAx )
i = 2i({4,B)) = Snélcr} nx%XRe{xTBx}’ i=1,2,...,2n (19)
x€S;
and
Ayi = 4i({(4,B)) = min maxIm xdx i=1,2 2n (20)
i — i ) 7S1CC2” w20 XTB.X ) T Ay ey ey
x€S;

where S; C C*" is an arbitrary i-dimensional sub-space (see Appendix A).
Obviously, the maximum problems and the minimum problems in Eqgs. (17) and (18) are global optimi-
zation problems.
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3. The vertex solution theorem
Before introducing the theorem that is the subject of this section, some notations are given. The bound-

ary matrices or extreme point matrices or vertex matrices of the 2n X 2n-dimensional interval matrices
A" =[4,4] and B' = [B, B| are, respectively, defined by

dr={4 = @) e a=a, =aylora,)ij=1,2,....2) 1=1,23,...,2 (21)
and
B = {IB, — (by) € B': by, = b, = By(or b,),i,j = 1,2,. Zn} [=1,2,3,..., 2% (22)

Under the matrix inequality constraint condition Eq. (7a), let us consider the minimax Rayleigh quotient
of real part and the imaginary part of the matrix pair (4, B).

i = 4i((4, B)) = mi RefSAN iy o (23)
%i = Zi({4, B)) = min maxRe) -0, i=12,....20n
x€S;
and
, i xTAx )
Ayi = Ai((4,B)) = Inin r?;?OXIm{xTBx}’ i=1,2,...,2n (24)
x€S;

In the sequel, we only prove the vertex solution theorem for the real part of the complex eigenvalue, be-
cause the proof of the vertex solution theorem for the imaginary part of the complex eigenvalue is similar to
that for the real part of the complex eigenvalue.

Obviously, according to the definition of the quadratic form, the extreme problem of the minimax
Rayleigh quotient of the matrix pair (4, B) may also be written in the following useful form

o

pq=19paXpXq
2n ?

Zp,qzl bpgxpXg

subject to the element inequality constraint condition Eq. (7b).
The problem Eq. (25) subject to the inequalities Eq. (7b) can simply be written as the extreme value prob-
lem as follows:

i=1,2,...,2n (25)

S;cC" x#0
xXES;

Jvi = 4i({4,B)) = min max Re{

2n
1 ApgXpX,
Ariext = Ariext ({4, BY) = §mg1 m;iox extrem {Re{zg‘qlbpqpq}} , i=1,2,...,2n (26)
CC' x apgal, n
s e U (gDt
For the extreme value problem
2n
g X X, R
R= extrem (Re M = extrem {Re{—l}} (27)
aMEa by Eb Zp,q:lbpqxpxq apqea})q‘bpqeb;q R2
Pg= 12 .2n pq=12,..2n
According to the optimum theory, the extreme value problem R = extrem {Re{R /R, }} can be decom-
a,,qea bpqe

q=12,..., u
posited into the real part of the quotient of the two extreme value problems

extrem ¢ Re{Ri} +v—1| extrem {Im{R;}} and extrem Re{R,} + v—1| extrem {Im{R,}} | ;,
aMEa apg€a pq bpy€ M bpqeb;)q

pg=12,.2n pq=12,..2n pq=12,..2n q=12....2n

1e.
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extrem Re{Ri}+v—1| extrem Im{R,}
R a,,qea a],qea
R= extrem {Re{—l}} — Red P2 A=l (28)
apaly by ebl, Ry
A extrem Re{R,} +v/—1| extrem Im{R,}
b,,qeb g € M
p.q=12,..2n q=12,..2n

We can know that the quantity R, is linear function of the elements a,,, p,q=1,2,...,2n. Based on
the extreme theorem in convex analysis, since the real part and imaginary part of the quantity R, are all
convex (or concave) functions of the elements a,, p,g=1,2,...,2n, and the interval sets
aI - = @y, @pg); Pyg=1,2,...,2n are all convex, the extreme values of the real part and imaginary part
of Ry will be reached on the boundary matrices or vertex matrices of the interval matrices

A'=[4,4) = (a!) and B' = [B,B] = (b)), i.c

2n
extrem Re{ Z ap,,xpxq} +Vv—=1] extrem Im{ Z apqxpx,,}

apqea l apqea 1
pg=12,...2n = pg=12,..2n =

- Re{ S xpxq} s r<lm{ S }) ~Re{e A} + VT (Im{x' ) 9)

P9=

Similarly, we also have that

2n
extrem Re{ Z b,,qxpxq} +V—1| extrem Im{ Z bpqx,,xq}

Meb 1 b,,,]eb 1
pq=1.2,..2n pa= =1.2,..2n pa=

= Re{ Zzn B;qxpxq} + \/j(lm{ 2Zn l;;qxpxq}> = Re{fo?[x} + \/——T(Im{xTB,x}) (30)

Thus, we can obtain

2n ~
Ay XX, T4,
R = extrem Re M — Red 22 (31)
apgaly bpg bl Zp‘qzlbpqxpxq xTBx
pq=12..2n '
Substitution of Eq. (31) into Eq. (26) yielding
Juist = Awiext (A, B))) = min max { R x A r=1,2,3,...,22" i=1,2...,2 (32)
Lrist — Zlriext sy Pt _S,-CC” xfbx c xTth s, l=1,2,5,..., y L=1,24,...,4n
x€eS;

Thus, the maximum and minimum values of the real parts 4,;, i = 1,2,...,2n of the complex eigenvalues 4;,
i=1,2,...,2n can, respectively, be determined by

}uri = )vrimax = max {;Lr'ist} = max {/erext A B >)}, = 1,2, - 72}’1 (33)
1,222 15, 122"
and
Ai = Aimax = min _ {l,} = min {;Lriext(<1as7Bt>)}7 i=1,2,...,2n (34)

]g.\\tQZZ”XZ” lgs‘tQZZ”XZ”
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In the same manner, the maximum and minimum values of the imaginary parts A,; i =1,2,...,2n of the
complex eigenvalues 4, i =1,2,...,2n, can, respectively, be determined by
i = Ayimax = max  { s} = _max {ie (A, B}, i=1,2,...,2n (35)

1<s,r 222 <s,1L22 2
and

by = domas = i {ha} = min | {duen((AoBD)} 0= 12002 (36)
The stationary value problem of Rayleigh’s quotient of the matrix pair (4,, B,) is equivalent to its algebraic
eigenvalue problem. Thus, the eigenvalue problem corresponding to Eq. (10) reads

Ay = AsBixe, s, 0=1,2,3,...,22"% i=1,2,....2n (37)
where 4, = (szj) and B, = (3;), the vector x;y is the eigenvector associated with the ith eigenvalue Aj.
Thus, we arrive at the following:

3.1. Vertex solution theorem

If the interval matrix 4' = [4, 4] = (d!,) is real symmetric and non-positive definite, and its boundary
ij

~S

matrix or vertex matrix is expressed as A, = (%-)a where Ez‘fj = &‘;[ =a; (or ay), i,j=12,....2n,
s=1,2,3,...,2*"%" and the interval matrix B' = [B, B] = (bllj) is also real symmetric and non-positive def-

inite, and its boundary matrix or vertex matrix is expressed as B, = (b;), where E; = 13; =b; (or by),
i,j=1,2,....2n, r=1,2,3,...,2%"?" Then the real part /lil.,i: 1,2,...,2n of the interval complex

eigenvalues }LII. = /IL. + v —l/l;, i=1,2,...,2n, of the interval matrix pair (4", B') can be determined as
follows:
o= ], i=1,2,....2n (38)

where the upper bound Z,;,i = 1,2,...,2n, and the lower bound 4,;, i = 1,2,...,2n of the real part of the
interval complex eigenvalues A = A\ +/—12!,i=1,2,...,2n, can be obtained by

L
i = Oyimax = max {2 ((4,B))} = max  {Re(lu((4,,B)))} i=12,....2n (39a)
1<S7t<22n><2n 1<S,t<22"><2"
and
bt = deimin = min {254, B))} = min  {Re(lu((4,,B,)))} i=12,...,2n (39b)
1§S,l§22"xzn 1§S.t§22”><2”
and the imaginary part /1;.,1' =1,2,...,2n of the interval complex eigenvalues )»f = /IL. + \/—1/1;1.,
i=1,2,...,2n, of the real non-positive definite interval matrix pair (AI, BI>can be determined as follows
21 7 7 .
/Lyl-:[ﬁyl- Ayl, i=1,2,....2n (40)
where the upper bound _,y,«, i=1,2,...,2n, and the lower bound 4,,, i = 1,2,...,2n of the imaginary part of
the interval complex eigenvalues /111. = )»ii + \/—1/1;1.,1' =1,2,...,2n, can be obtained by

Toi = Jgimax = max__ { (4, B,)} = max,_, pea {Im(A((4,,B)))} i=1,2,...,2n (41a)

1§S.t§22"><2"
and

dyp = Jyimin =  min _ {Aw((4,B))} = min  {Im(Za((4,,B)))} i=1.2,...,2n (41b)

15 <02n2n 1s, 122 2m
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where At = Aust + V—14us, i =1,2,...,2n;5,t =1,2,3, ... .22 satisfy the following generalized eigen-
value problems:
A = JigBatg, s, t=1,2,...,22" =12 ... 2n (42)

where u; is the eigenvector associated with the ith eigenvalue Ag.

4. Interval perturbation method

By the virtue of the central notation of the interval matrix for the interval matrices A4' = [4,4] and
B' = [B, B], we have
A'=4°+ A4", B'=B° + AB' (43)

where A4' =[—AA4,AA4] and AB' = [—AB,AB].
Thus, by Eq. (43), the generalized interval eigenvalue problem Eq. (10) can be written in the following
useful form:

(4° 4+ Ad")x = A(B® + AB")x (44a)
and
YT (4° + A4") = Jy"(B° + AB") (44b)

In this study, based on Eq. (44), we will present an interval perturbation method for the generalized interval
eigenvalue problem.

For the sake of completeness, we review the matrix perturbation theory. The purpose of the perturbation
theory is to show approximately how the eigenvalues change as the matrix changes.

Let us consider any # X n real symmetric matrix pair Ao and By, and let us denote its eigenvalues by A,
i=1,2,...,n, its right eigenvector by xo,, i =1,2,...,n and its eigenvectors by yo,, i =1,2,...,n, where the
eigenvalues and eigenvectors satisfy

Agxor = AoiBgxo, ygl.Ag = )LOiygiBg, i=1,2,...,n (45)

For convenience, we shall assume that the eigenvectors xq;, i =1,2,...,n and ygo,, i =1,2,...,n have been
normalized so as to satisfy

yngSXOi = ;LOiéij, yg[Boin = 5,-j, i= 1, 2, ...,n (46)
where
1, i=j
0y = , Li=1,2,..., 47
If small changes are introduced to the matrices 4 and B, i.e.
A=Ay+34, B=By,+dB (48)

where A and By are the unperturbed matrix pair, and 84 and 8B are the matrix pair representing the small
changes from A, and B,. We shall refer to 4 and B as the perturbed matrix pair. The perturbed generalized
eigenvalue problem can be written in the form

(Ao + 8A4)x; = /;(By + 8B)x:, ¥ (Ao + 84) = 2T (By+ 8B), i=1,2,...,n (49)
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where 4;, i=1,2,...,n are the perturbed eigenvalues, x;, i =1,2,...,n the perturbed right eigenvectors
and y; i=1,2,...,n the perturbed left eigenvectors. As to the unperturbed problem, the eigenvalues are
assumed to be distinct and the eigenvectors bi-orthonormal, i.e.,

y}Ax,- = )viéij, y;eri = 5,‘], i= 1, 2, - (50)
Assuming that Ag, By, 84, 0B, lo;, i=1,2,...,n, x0;, i =1,2,...,n, and yq; i = 1,2,...,n are known, and A,

i=1,2,...,nare all distinct eigenvalues, one can obtain the expression of the first perturbation eigenvalues
for the perturbed matrix pair 4 = Ay + 84 and B = By + OB as follows:

;“i :/lol-JrS/l,- :)VO,ergl(&‘l 7/1()i63)x01', = 1727...,7’1 (51)
where
8/1,' = yOTl(ﬁA - /10,«53))60[ (52)

Since 4; = Air + V' —11iy, Zoi = Aoir + V=1 oiy, Xoi = Xoir + V —1x05 and yy; = vy, + v _ly()iy’ i=12,...,n
are the complex numbers or complex vectors, and Eq. (51) can be written in real and imaginary part forms

2i = dip + N =10y = (i + 82) +V—1(Joyy +82y), i=1,2,....n (53)
where

Air = Aoir + O%in, Ay = Aoy + 04y, i=1,2,....n (54)
where

8 ir = V0,040 — yOTinAiny + Aoir (v, 9BXoir — yOTinBiny) — A0iy (0;.0BX0iy + yOTiy?Son,-,.) (55)
and

84y = ¥0,,04%0i + yOT[ySAxo,-, + Zoiy (v, 0Bx0ir — yOT,.ySBxO,-y) + Ao (v5,;,.3BXo0iy + yOTl.ySBin,.) (56)

Consider the generalized interval eigenvalue problem Eq. (10). Under the small deviation amplitudes
AA'=[—AA,AA] and AB' =[—AB,AB] of the interval matrix pair A' = A°+ AA4" and B'= B°+ AB', if
we view AA' =[—AA4,AA] and AB' = [—AB,AB] as interval perturbations around the matrix pair 4° and
B°, we can solve the generalized interval eigenvalue problem by the matrix perturbation method. By the
interval mathematics or interval analysis, from the first equation of Eq. (54), we can obtain the interval
extension of the real part of the complex eigenvalues 4, i=1,2,...,n

An = iy i) = Peir + 000, i=1,2,....m (57)
where
82, = (84, 7]
=y xg, — y;SyAAIxCiy + Aeir (V5 AB'Xeir — ycT;yABIxciy) — iy (Vi AB'Xeiy + yfl,yABIxc,-,) (58)

Substituting Eq. (58) into Eq. (57), by the interval operations, gives

/lll'r = [/L Iir] = [)vcir + Siir; /lcir + Szir]a i= 1; 2; ceey (59)

Liry
where
T T
Ve AAX i — ¥, AAX i+

Iir = Aeir + 67”17 = Jeir + ;”Cf"(y;l;rABxCi" - yZiyABxCi}’)_ , 1= 17 27 R (603)
ey cTirABxCiy + yzz‘yABxcir)



Z. Qiu, X. Wang | International Journal of Solids and Structures 42 (2005) 2883-2900 2893

and
VerDAx i — yh AAX G+
Dip = eir + 0diy = Jaip — | Aeir Vi ABXir — Y5 ABXy) = | i=1,2,....n (60b)
Deiy (V25 ABXciy + ¥ 5, ABX.ir)
Let

VEAAx e — y5 Adx .+
Adyy = | eir V], ABXcir — ¥ ABxe)— -
Jeiy (V5 ABX iy + y(T,,.yAme-,)
then Eq. (60) becomes

Qir = eir F Dipy bip = Aeir — Adipy,  i=1,2,...)n (62)
In the similar manner, we also can obtain the imaginary part of the complex eigenvalues 4;, i =1,2,...,n
o= i)y i=1,2,....m (63)
where
Tiy = iy + Ay, Liy = Deiy = Ay, i=1,2,....n (64)
in which
Vi AAX G, — yZiyAAxc,-r-i-
Ay = | deiy (v, ABXcir — 25 ABX, ) — (65)
Jeir (WY ABx iy, + yLTiyABxci,.)

In Eqgs. (62) and (64), the eigenvalues Ay = Aur +V—144,i=1,2,...,n and the eigenvectors
Xei = Xeir +V—1xey,i=1,2,...;nand y, =y, + V—1y,,i=1,2,... n satisty

ijAch,- = )“Ciéij) y—c[;-BC)CCi = 5ij; i= 1, 27 ..., n (66)

Thus, we arrive at the following solution theorem for the generalized interval eigenvalue problem.
4.1. Perturbation solution theorem

If A = Aur + V—1 Aeiy, 1 =1,2,...,n, are all distinct eigenvalues of the midpoint matrix pair A° and B°
of real symmetric non-positive definite interval matrix pair 4' = 4°+ A 4" and B' = B°+ AB', which
AA"=[—AA,A A]and AB' = [—AB, AB] are small uncertainty matrices, with the corresponding right eigen-
vectors X, = Xq + \/—_lxc,-y, i=1,2,...,nand the left eigenvectors y., =y, + \/:—lyciy, i=1,2,...,n
Then the interval eigenvalues of interval matrix pair A' = 4°+ A4 and B' = B+ AB' are given by the
first-order perturbation as follows:

b=y V=1 A= kil Ay =Rl 1,2,...0 (67)
where

Iir = ;Lcir —+ A/lira iir = )"Cir — A)‘fira = 1, 2, -~ (683)
and

Iiy = /lciy —+ A)ul'y, iiy = ;“ciy — A/lly; = 1, 2, coe,n (68b)
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where
VerAAXeir — y5, Adx i+ VerAAxey — y5, Adxei+
Ay = | 2eir (y iy ABX i — yg;’yABxCi,V) =, Ay = Aciy 8% ZirABxcir =Y CT,[yABxciy) - (69)
Deiy (Vi ABX iy + y 5 ABX.iy) Aeir (Ve ABX iy, + v ABxcy)

in which the eigenvalues A, = A + V—144,i = 1,2,...,n, the right eigenvectors x,; = x.; + vV —1xg,
i=1,2,...,n and the left eigenvectors y,, =y, + V—1y,,, i =1,2,...,n satisfy

yL/Acxu - /laéz/a y”chcz - 61/7 = 1727 R (70)

Obviously, from the Eq. (68), we can see that we only need to solve two generalized eigenvalue problems
and compute four expressions, then all interval eigenvalues of the interval matrix can be determined. Thus,
the presented solution theorem is very practical.

5. Numerical example

In this section, the proposed vertex solution theorem and interval perturbation method are applied to a
seven degree-of-freedom spring-damping-mass system with uncertainty to illustrate its effectiveness as
shown in Fig. 1. It is assumed that due to the manufacture errors or the unavoidable scatters in the material
properties, a part of physical quantities of the system exhibit some uncertainties. For convenience, all the
quantities are dimensionless. In this numerical example it is assumed that my, m,, C;, C>, K5 and Kg
are uncertain-but-bounded variables, and the interval masses are taken as m; = [m$ — fm$, m$ + fm¢],
i=1,2, interval damping C; = [C} — C;,C; + fC5],i = 1,2, interval spring constants K, = [K} — K7,
K+ BK?],i = 5,6, where m$ =2.0(i=1,2),C; =0.03(i=1,2)K{ =1.0(i =5,6) and p is the variable
parameter. Other quantities are deterministic, in which masses are taken as m;=2.0, i=3,4,5,6,
my = 1.0, damping C;=0.02, i=3,4C;=0.01, i=5,6,7,8, spring constants K;=1.0, i=3,4,....8. In
the following the regions of the real part and imaginary part of complex eigenvalues are calculated using
the presented vertex solution method and the interval perturbation method in comparison with Deif’s
solution theorem (Deif, 1991).

The real part and imaginary part of complex eigenvalues computed by the vertex solution theorem and
Deif’s solution method are listed in Tables 1 and 2 respectively when the variable parameter /5 is taken as
0.01. In the tables k is the number of modes; A and AS are the real part and the imaginary part of the nom-
inal complex eigenvalue, respectively; / :/ and A are the upper bound and lower bound of the real part of
the complex eigenvalues using the vertex solutlon theorem, respectively; /1} and ) are the upper bound and
lower bound of the imaginary part of the complex eigenvalues using the vertex solutlon theorem, respec-
tively; A and / A are the upper bound and lower bound of the real part of the complex eigenvalues obtained
by Delf's method respectively; A and A A are the upper bound and lower bound of the imaginary part of
the complex eigenvalues obtalned by Delf‘s method, respectively.

From the results listed in the Tables 1 and 2, we can see that the maximum or upper bounds and the
minimum or lower bounds on the real part and the imaginary part of complex eigenvalues yielded by
the vertex solution theorem are the same as those produced by Deif’s solution theorem. Nevertheless,

Fig. 1. A spring-damping-mass system with seven degrees of freedom.
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Table 1
Lower and upper bounds of the real part of complex eigenvalues (= 0.01)
k s i iy y iy
1(2) —0.747623E—03 —0.798942E—03 —0.703841E—03 —0.798942E—03 —0.703841E—03
3(4) —0.280321E—02 —0.290725E-02 —0.270265E—-02 —0.290725E—-02 —0.270265E—-02
5(6) —0.582838E—02 —0.596573E—02 —0.569539E—02 —0.596573E—02 —0.569539E—02
7(8) —0.108606E—01 —0.110266E—01 —0.106931E—01 —0.110266E—01 —0.106931E—01
9(10) —0.144704E—-01 —0.147770E-01 —0.141723E-01 —0.147770E-01 —0.141723E-01
11(12) —0.181753E-01 —0.186466E—01 —0.177204E—01 —0.186466E—01 —0.177204E—-01
13(14) —0.121144E-01 —0.121179E-01 —0.121110E-01 —0.121179E-01 —0.121110E-01
Table 2
Lower and upper bounds of the imaginary part of complex eigenvalues (f = 0.01)

< v ~D X
k Ay i;/ Ay Ay 4;)
1 0.278316 0.262973 0.292354 0.262973 0.292354
2 —0.278316 —0.292354 —0.262973 —0.292354 —0.262973
3 0.556033 0.550272 0.561972 0.550272 0.561972
4 —0.556033 —0.561972 —0.550272 —0.561972 —0.550272
5 0.820673 0.817410 0.823958 0.817410 0.823958
6 —0.820673 —0.823958 —0.817410 —0.823958 —0.817410
7 1.054730 1.050560 1.058913 1.050560 1.058913
8 —1.054730 —1.058913 —1.050560 —1.058913 —1.050560
9 1.241950 1.236371 1.247545 1.236371 1.247545
10 —1.241950 —1.247545 —1.236371 —1.247545 —1.236371
11 1.367428 1.363960 1.370954 1.363960 1.370954
12 —1.367428 —1.370954 —1.363960 —1.370954 —1.363960
13 1.553723 1.552818 1.554650 1.552818 1.554650
14 —1.553723 —1.554650 —1.552818 —1.554650 —1.552818

the presented method is superior to Deif’s method because there exists many difficulties in Deif’s solution
theorem, such as: it is quite difficult how to determine the invariance properties of the eigenvectors’ com-
ponents in the interval matrix; large computational efforts etc.

Comparisons of the range curves of the real part of the complex eigenvalues of the system computed by
the vertex solution theorem and the interval perturbation method when the variable parameter f§ ranges
from 0.00 to 0.05 are plotted in Fig. 2(a)—(g), and the imaginary part plotted in Fig. 3(a)—(n). Zf and irp
denote the upper bound and lower bound of the real part of the complex eigenvalues obtained by the inter-
val perturbation method, respectively; Zf and Af denote the upper bound and lower bound of the imaginary
part of the complex eigenvalues obtained by the interval perturbation method respectively.

It can be seen from the Figs. 2 and 3 that as far as the real part and the imaginary part of complex eigen-
values is concerned, the low order eigenvalues obtained by the interval perturbation are contained by those
yielded by the vertex solution method. That is to say, the lower bounds within the vertex solution method
are smaller than those predicted by the interval perturbation method. Likewise, the upper bounds fur-
nished by the vertex solution method are larger than those yielded by the interval perturbation method.
However, for the high order eigenvalues, the region curves produced by the interval perturbation method
gradually approach those obtained by the vertex solution method. As far the imaginary part of complex
eigenvalues, sometimes they even arrive to coincidence; sometimes instead the width of the region bounds
obtained by the interval perturbation method is slightly larger than that yielded by the vertex solution
method.
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Fig. 2. Comparison of the region curves of the real part of complex eigenvalues yielded by the vertex solution theorem and the interval
perturbation method.
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Fig. 3. Comparison of the region curves of the imaginary part of complex eigenvalues yielded by the vertex solution theorem and the
interval perturbation method.

6. Conclusions

In this study, based on the interval mathematics and the optimization theory, an exact solution

method—the vertex solution theorem and an interval perturbation method were presented for determining
the range of complex eigenvalues.
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Fig. 3 (continued)

From the proof of the vertex solution theorem we can see that the computational efforts will grow shar-
ply with the degree of uncertainty increasing. It shows the inefficiency of such approach for the solution of
practical application. As we known that the vertex (exact) solution of the linear interval systems is NP-hard
proved by Rohn and Kreinovich (1995), the vertex solution theorem for the generalized eigenvalue problem
of interval matrices is also NP-hard. Nevertheless, the aim of this paper is mainly to provide a proof for the
vertex solution theorem for the vibration frequencies of systems with uncertainty. Although such a formu-
lation may not represent a significant contribution toward the advancement of engineering sciences, the ver-
tex solution theorem can be used as a way to verify the sharpness of non NP-hard approximate solutions to
the systems with interval coefficient matrices.

The generalized interval complex eigenvalue problem of interval matrices is by far more intricate than
the generalized interval real eigenvalue problem of interval matrices. If one views the uncertainty of the
interval matrix as a perturbation around the midpoint of the interval matrix, one can solve the generalized
interval eigenvalue problem by the perturbation method. By applying the interval extension to the matrix
perturbation formulation, we present the interval perturbation approximating formula for estimating the
upper and lower bounds on the set of all possible eigenvalues of the generalized interval complex eigenvalue
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problem of the real symmetric non-positive definite interval matrix. Weak application condition and
inexpensive computational efforts are mainly characteristics of the presented interval perturbation
method.
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Appendix A. Minmax theorem for the generalized complex eigenvalues

Let Sy.1 < k < 2n denote an arbitrary k-dimensional subspace of complex space C*", and 4 and B be the
2n x 2n-dimensional real symmetric non-positive definite matrices with 2n complex eigenvalues
M < Ja < -+ < Aoy, Let the real parts and imaginary parts of the complex eigenvalues of the matrix pair
(A4, B) be ordered in increasing size, 4,1 < 4,0 < -+ < Ao, and Ay < Ao < -+ < Ayop, and k be an integer
with 1 < k < 2n. Then, for the real part of complex eigenvalues

. xTAx
Aot = min max  Req{— , k=1,2,....2n (A.1)
W1 W3, Woy_g EC2 x#0.xeC? xT'Bx
XLlwy,wo, wo, g
and
T
. x Ax
Ak = max min  Re{———p, k=12,...,2n (A.2)
Wi Wi 1 ECP xFA0xeC? xIBx

xLlwypwa, o wkg

and for the imaginary part of complex eigenvalues

T
. X Ax
Do = min max  Im{——¢, k=12,....2n (A.3)
W W e Way_ g ECH x#40,xeC? x'Bx
xLlwypwa, o wo, g
and
T
. x Ax
I = max min_ Imq{— , k=1,2,....2n (A4)
W1 W2, Wy €C2 x#40,xeC? x!Bx

xLlwywa, Wi

Proof. Only Eq. (A.1) is considered, and the proofs for Eqgs. (A.2)-(A.4) are similar.
Write A = (X)) 'AX " and B=(X"H7 X! with A4 =diag(A1, s, ..., ), and let 1 <k <2n. If x # 0,
then

xTAx _ X% A(x %) _ X' A(x %) (AS)
xTBx xTBx x'x)"(x'x) '
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and {X 'x:xeC® and x # 0} = {y € C*":y # 0}. Thus, if wy,ws,...,wa,_ € C*" are given, we have

T T
x' Ax A
max Re T = max Re 4 T 4
x40 x!'Bx y#0 Yy
XLwi, W, wo—k YAX N Xy X g,
Vl
2
= max Re E A
yTy=1 1
YAX N Xy X,
> max Re A, ly,[*
yly=1
YyAX T Xy X g,
y1=ya="=Y2, ,=0
2n
= max Re LlilP b = o (A.6)
el +|Vk+|| +- HV?,,\ =1 i=1
ylX- W1X wo,. wzn k
This shows that
xAx .
max Req— = 4 (A7)
x£0,xeC xBx

xLlwy,wa,wo,_ g

for any 2n — k vectors wy,ws,...,wy,_r. This inequality Eq. (A.7) becomes an equality if we choose
W; = W»,,_i+1. Therefore

WL W oo W2k x#0
XLwy,wa,eWon— g

min max Re{ml} = A (A.8)
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