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Abstract

The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the complex eigenvalues of
the non-proportional damping structures. By combining the interval mathematics and the finite element analysis, the
mass matrix, the damping matrix and the stiffness matrix were represented as the interval matrices. Firstly, with the
help of the optimization theory, we presented an exact solution—the vertex solution theorem, for determining the exact
upper bounds or maximum values and exact lower bounds or minimum values of complex eigenvalues of structures,
where the extreme values are reached on the boundary of the interval mass, damping and stiffness matrices. Then,
an interval perturbation method was proposed, which needs less computational efforts. A numerical example of a seven
degree-of-freedom spring-damping-mass system was used to illustrate the computational aspects of the presented vertex
solution theorem and the interval perturbation method in comparison with Deif�s method.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Complex eigenvalues estimation of non-proportional damping structures with uncertainty is very vital to
the design and analysis of structures used in many engineering problems. All structural analysis and design
problems involve imprecision or approximation or uncertainty. Analysis and design under uncertainty
depend on representation of what is known about the uncertain information. The choice of a model of
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uncertainty depends on the type and quantity of information available. There are three classes of uncertain
models (Li and Liao, 2001), and they are: probabilistic approach, fuzzy theory and interval analysis. If the
uncertain variables are described as random variables or random process with a specified probability dis-
tribution, the probabilistic approach can be used. In fuzzy theory, the uncertainty is interpreted as the de-
signer and analyst�s choice to use a particular value for the uncertain variable, if a preference function is
used to describe the desirability of using different values within the some range. In interval analysis, the
uncertain variables are denoted by a simple range or set, i.e. interval vector. It can be seen that when infor-
mation about uncertain variables in the form of a preference or probability function is not available, inter-
val analysis can be used most conveniently.

In many dynamic problems of structural engineering, one often encounters the following problem: Given
two real symmetric non-positive definite matrices A and B of order n, determine the value of a scalar k
which satisfies the equation Au = kBu, which is called the generalized complex eigenvalue problem. k is
called the eigenvalue of matrix pair A and B, and u is the associated eigenvector. The eigenvalue k is gen-
erally to be a complex number k ¼ kr þ

ffiffiffiffiffiffiffi
�1

p
ky , where kr and ky are respectively the real and imaginary

parts of the complex eigenvalue k for identical structural system. However, experiments have shown that
complex eigenvalue varies in uncertainty because the elements of the matrices A and B can be neither meas-
ured exactly nor calculated exactly. The incomplete information about the elements of the matrices A and B
is a result of errors in observation, measurement errors, change on operating conditions ageing, mainte-
nance-induced errors, etc. In such circumstance we do not know the elements of the matrices A and B ex-
actly; instead, we only know the ends of intervals in which the elements of the matrices A and B are
confined. Thus, the complex eigenvalues are uncertain variables whose uncertain properties are determined
by the uncertain elements of the matrices A and B.

When the matrices A and B are interval uncertain (Moore, 1979; Alefeld and Herzberger, 1983; Deif,
1991), i.e., AI ¼ ½A;A� ¼ ðaIijÞ ¼ ð½aij; �aij�Þ and BI ¼ ½B;B� ¼ ðbIijÞ ¼ ð½bij; �bij�Þ, the complex eigenvalues

k ¼ kr þ
ffiffiffiffiffiffiffi
�1

p
ky will be interval complex numbers kI

i ¼ kI
ir þ

ffiffiffiffiffiffiffi
�1

p
kI
iy , where kI

ir ¼ ½kir;
�kir�, kI

iy ¼ ½kiy ;
�kiy �,

i = 1,2, . . .,n.
In this study, we will deal with the generalized interval complex eigenvalue problem of real symmetric

but non-positive definite interval matrices.
The research on the interval eigenvalue problem has begun to emerge in recent years. Extensive re-

searches were investigated by control engineers (Bialas, 1983; James, 1984) from the view point of stability
and robustness analysis. Hudak (1984) investigated ways of finding a constant matrix such that the certain
constraint condition with the interval matrix given. Rohn (1987) studied the symmetric interval matrix and
ended up with the formulae when the wide of interval matrix has rank one. Hollot and Bartlett (1987) ver-
ified that the spectrum of eigenvalues of an interval matrix family was found to depend of finding a constant
matrix under the constraint with the given interval matrix. Based on the invariance properties of the char-
acteristic vectors� entries, Deif (1991) obtained the solution theorem for interval matrix. Qiu et al. (1995)
extended Deif�s solution theorem for the standard interval eigenvalue problem of real symmetric interval
matrices to the generalized interval eigenvalue problem, and presented the interval perturbation method,
semi-definite solution theorem and the inclusion theorem.

However, the mentioned-above methods are all used to solve the standard or generalized real eigenvalue
problem. Deif (1991) established the solution theorem for standard and generalized interval complex eigen-
value problem; nevertheless, there existed many difficulties, such as: it is quite difficult how to determine the
invariance properties of the eigenvectors� components in the interval matrix; large computational efforts.

In this paper, firstly, by virtue of interval mathematics and the optimization theory, an exact solution meth-
od—the vertex solution theorem, was proposed for determining the exact maximum values or the upper
bounds and the minimum values or the lower bounds on the generalized interval complex eigenvalues of struc-
tures with uncertain-but-bounded parameters; then an efficient interval perturbation method was presented.
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In the following, first the problem formulation of the generalized interval complex eigenvalue of
non-proportional damping structure with uncertain-but-bounded parameters is given in Section 2. Then
in Section 3 the vertex solution theorem for the generalized interval complex eigenvalue problem is pre-
sented, followed by the interval perturbation method in Section 4. An example of a seven degree-of-free-
dom spring-damping-mass system is used to illustrate the application of the presented methods in
Section 5. Finally, in Section 6 a conclusion is given.
2. Problem formulation

Let us consider the differential equation of motion of systems with n degrees of freedom (Müeller and
Schiehlen, 1985)
M€yðtÞ þ C _yðtÞ þ KyðtÞ ¼ QðtÞ ð1Þ

where M = (mij) is the mass matrix; C = (cij) is the damping matrix; K = (kij) is the stiffness matrix, and
Q(t) = (qi(t)) is the external load vector. The matrices M, C and K are all symmetric, and are n · n-dimen-
sional matrices. yðtÞ ¼ ðyiðtÞÞ; _yðtÞ ¼ ð _yiðtÞÞ and €yðtÞ ¼ ð€yiðtÞÞ are the n-dimensional displacement, velocity,
and acceleration vectors.

The dynamics problem associated with Eq. (1) can be reduced to a standard form by a method developed
by Meirovotch (1980). In the following we will give a brief description of the method.

Introducing the 2n-dimensional state vector
xðtÞ ¼ ðyðtÞT _yðtÞTÞT ð2Þ

and the 2n-dimensional excitation vector
F ðtÞ ¼ ðQðtÞT0TÞT ð3Þ

Eq. (1) can be written in the form
A _xðtÞ þ BxðtÞ ¼ F ðtÞ ð4Þ

where
A ¼
C M

M 0

� �
; B ¼

K 0

0 �M

� �
ð5Þ
in which A and B are 2n · 2n-dimensional real symmetric non-positive definite matrices.
The generalized complex eigenvalue problem corresponding to Eq. (4) has the following form:
Ax ¼ kBx ð6Þ

Obviously, the solutions to Eq. (6) consist of 2n complex eigenvalues ki ¼ kri þ

ffiffiffiffiffiffiffi
�1

p
kyi and 2n complex

eigenvectors xi ¼ xri þ
ffiffiffiffiffiffiffi
�1

p
xyi. Because the matrices A and B are real symmetric, if ki ¼ kri þ

ffiffiffiffiffiffiffi
�1

p
kyi is

an eigenvalue, then its complex conjugate ~ki ¼ kri �
ffiffiffiffiffiffiffi
�1

p
kyi is also an eigenvalue, and a similar statement

can be made concerning the eigenvectors.
The complex eigenvalues given by Eq. (6) are often assumed to be constant for identical structural

systems. However, experience and experiments have shown that these values vary uncertainly because in
reality the physical and geometric properties of the elements in A and B can be neither measured
exactly nor manufactured exactly. In this paper, we assume that the uncertainties in A and B are bounded,
and the uncertain but bounded matrices A and B can be written as the following matrix inequality form
A 6 A 6 A; B 6 B 6 B ð7aÞ
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or the element form
aij 6 aij 6 �aij; bij 6 bij 6 �bij; i; j ¼ 1; 2; . . . ; n ð7bÞ
in which A ¼ ð�aijÞ and A = (aij), respectively, are the upper bound matrix and the lower bound matrix of the
uncertain matrix A, and B ¼ ðbijÞ and B = (bij), respectively, are the upper bound matrix and the lower
bound matrix of the uncertain matrix B.

Usually, it is very difficult to solve the generalized complex eigenvalue problem Eq. (6) under the con-
dition of the matrix inequality constraints Eqs. (7).

We number the real parts and imaginary parts of the complex eigenvalues of the matrix pair hA,Bi in
non-descending order
kr1 6 kr2 6 � � � 6 kr2n; ky1 6 ky2 6 � � � 6 ky2n ð8Þ

In this paper, we shall study a method for computing the complex eigenvalues of Eq. (6) subjected to the

constraints Eqs. (7), in which the elements aij, and bij, i, j = 1,2, . . ., 2n, of the matrix pair A and B are not
known precisely. The incomplete information about the elements of matrices A and B is a result of meas-
urement errors, etc. In most cases we only know the ends of intervals in which the elements of the matrices
A and B are confined.

In terms of the interval matrix notation (Moore, 1979; Alefeld and Herzberger, 1983), the constraint
condition Eq. (7a) can be expressed as
A 2 AI; B 2 BI ð9aÞ

and
aij 2 aIij ¼ ½aij; �aij�; bij 2 bIij ¼ ½bij; �bij�; i; j ¼ 1; 2; . . . ; 2n ð9bÞ
in which AI ¼ ½A;A� and BI ¼ ½B;B� are the symmetric interval matrices.
There are many applications in Eq. (6) with the constraint conditions Eqs. (7), where the elements of the

matrices A and B are not precisely known. If we known an interval matrix AI that is bounding A and an
interval matrix BI that is bounding B, the generalized complex eigenvalue problem can be expressed as
AIx ¼ kBIx ð10Þ

which is called the generalized interval complex eigenvalue problem. Because AI and BI are defined as inter-
val matrices, the associated real parts and imaginary parts of their complex eigenvalues similarly constitute
interval variables
kI ¼ kI
r þ

ffiffiffiffiffiffiffi
�1

p
kI
y ¼ ½kr; kr� þ

ffiffiffiffiffiffiffi
�1

p
½ky ; ky � ¼ ðkI

iÞ ¼ ðkI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yiÞ ð11Þ
where
kI
ri ¼ ½kri;

�kri; kI
yi ¼ ½kyi;

�kyi�; i; j ¼ 1; 2; . . . ; 2n ð12Þ
The interval eigenvalue solutions to Eq. (10) will contain the eigenvalue solutions to Eqs. (6) and (7). The
real parts and the imaginary parts of the complex eigenvalue solutions to Eqs. (6) and (7) are denoted by the
following sets:
Cr ¼ fkr : kr 2 Rn; Ax ¼ ðkr þ
ffiffiffiffiffiffiffi
�1

p
kyÞBx; A ¼ AT; B ¼ BT; A 2 AI; B 2 BIg ð13Þ
and
Cy ¼ ky : ky 2 Rn; Ax ¼ ðkr þ
ffiffiffiffiffiffiffi
�1

p
kyÞBx; A ¼ AT; B ¼ BT; A 2 AI; B 2 BI

n o
ð14Þ
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We should stress that Cr and Cy may be generally of complicated geometric shapes so that it may
usually impractical to try to solve them. Instead, it is a common practice to seek the interval vector of
the real part kI

r ¼ ½kr; kr� ¼ ðkI
riÞ containing Cr and the interval vector of the imaginary part

kI
y ¼ ½ky ; ky � ¼ ðkI

yiÞ containing Cy, where the interval vectors kI
r and kI

y have the narrowest possible interval
components.

When endeavoring to solve Eq. (10), we are, in fact, able to determine an interval vector of the real part
kI
r ¼ ½kr; kr� ¼ ðkI

riÞ and an interval vector of the imaginary part kI
y ¼ ½ky ; ky � ¼ ðkI

yiÞ, which all have
the smallest widths of intervals enclosing all possible complex eigenvalues k 2 C2n, satisfying Ax = kBx,
when A and B assume all possible combinations inside AI and BI. In other words, we seek a multi-dimen-
sional rectangle kI ¼ kI

r þ
ffiffiffiffiffiffiffi
�1

p
kI
y ¼ ½kr; kr� þ

ffiffiffiffiffiffiffi
�1

p
½ky ; ky � ¼ ðkI

i Þ ¼ ðkI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yiÞ containing all eigenvalues

of Eqs. (6) and (7).
In this study, we shall present a solution of the generalized interval complex eigenvalue problem Eq. (10)

which serves a wide range of applications. The basic problem to be solved herein as follows: Given the
central matrices Ac ¼ ðAþ AÞ=2 and Bc ¼ ðBþ BÞ=2 of AI ¼ ½A;A� and BI ¼ ½B;B�, respectively, and the
deviation amplitude matrices DA ¼ ðA� AÞ=2 and DB ¼ ðB� BÞ=2 of AI ¼ ½A;A� and BI ¼ ½B;B�, find a
multi-dimensional rectangle containing the set of eigenvalues of Eq. (10) for interval matrices
AI ¼ ½A;A� ¼ fA : A� Acj j 6 DAg and BI ¼ ½B;B� ¼ fB : B� Bcj j 6 DBg. In other words, we seek the inter-
val complex eigenvalues or the upper and lower bounds on the real parts and the imaginary parts of the
interval complex eigenvalues or the set of Eq. (10), i.e.
kI ¼ kI
r þ

ffiffiffiffiffiffiffi
�1

p
kI
y ¼ ½kr; kr� þ

ffiffiffiffiffiffiffi
�1

p
½ky ; ky � ¼ ðkI

i Þ ¼ ðkI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yiÞ ð15Þ
where
kI
ri ¼ ½kri; kri; kI

yi ¼ ½kyi; kyi�; i; j ¼ 1; 2; . . . ; 2n ð16Þ
in which
kri ¼ max
A2AI;B2BI

fkriðhA;BiÞg; kri ¼ min
A2AI;B2BI

fkriðhA;BiÞg; i ¼ 1; 2; . . . ; 2n ð17Þ
and
kyi ¼ max
A2AI;B2BI

fkriðhA;BiÞg; kyi ¼ min
A2AI;B2BI

fkriðhA;BiÞg; i ¼ 1; 2; . . . ; 2n ð18Þ
where
kri ¼ kriðhA;BiÞ ¼ min
Si�C2n

max
x6¼0
x2Si

Re
xTAx
xTBx

� �
; i ¼ 1; 2; . . . ; 2n ð19Þ
and
kyi ¼ kyiðhA;BiÞ ¼ min
Si�C2n

max
x6¼0
x2Si

Im
xTAx
xTBx

� �
; i ¼ 1; 2; . . . ; 2n ð20Þ
where Si � C2n is an arbitrary i-dimensional sub-space (see Appendix A).
Obviously, the maximum problems and the minimum problems in Eqs. (17) and (18) are global optimi-

zation problems.
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3. The vertex solution theorem

Before introducing the theorem that is the subject of this section, some notations are given. The bound-
ary matrices or extreme point matrices or vertex matrices of the 2n · 2n-dimensional interval matrices
AI ¼ ½A;A� and BI ¼ ½B;B� are, respectively, defined by
Âl ¼ Âl ¼ ðâlijÞ 2 AI : âlij ¼ âlji ¼ aijðor aijÞ; i; j ¼ 1; 2; . . . ; 2n
n o

l ¼ 1; 2; 3; . . . ; 22n�2n ð21Þ
and
B̂l ¼ B̂l ¼ ðb̂lijÞ 2 BI : b̂
l

ij ¼ b̂
l

ji ¼ bijðor bijÞ; i; j ¼ 1; 2; . . . ; 2n
n o

l ¼ 1; 2; 3; . . . ; 22n�2n ð22Þ
Under the matrix inequality constraint condition Eq. (7a), let us consider the minimax Rayleigh quotient
of real part and the imaginary part of the matrix pair hA,Bi.
kri ¼ kriðhA;BiÞ ¼ min
Si�Cn

max
x 6¼0
x2Si

Re
xTAx
xTBx

� �
; i ¼ 1; 2; . . . ; 2n ð23Þ
and
kyi ¼ kyiðhA;BiÞ ¼ min
Si�Cn

max
x6¼0
x2Si

Im
xTAx
xTBx

� �
; i ¼ 1; 2; . . . ; 2n ð24Þ
In the sequel, we only prove the vertex solution theorem for the real part of the complex eigenvalue, be-
cause the proof of the vertex solution theorem for the imaginary part of the complex eigenvalue is similar to
that for the real part of the complex eigenvalue.

Obviously, according to the definition of the quadratic form, the extreme problem of the minimax
Rayleigh quotient of the matrix pair hA,Bi may also be written in the following useful form
kri ¼ kriðhA;BiÞ ¼ min
Si�Cn

max
x 6¼0
x2Si

Re

P2n
p;q¼1apqxpxqP2n
p;q¼1bpqxpxq

( )
; i ¼ 1; 2; . . . ; 2n ð25Þ
subject to the element inequality constraint condition Eq. (7b).
The problem Eq. (25) subject to the inequalities Eq. (7b) can simply be written as the extreme value prob-

lem as follows:
kriext ¼ kriextðhA;BiÞ ¼ min
Si�Cn

max
x6¼0
x2Si

extrem
apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

Re

P2n
p;q¼1apqxpxqP2n
p;q¼1bpqxpxq

( )( )8><
>:

9>=
>;; i ¼ 1; 2; . . . ; 2n ð26Þ
For the extreme value problem
R ¼ extrem
apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

Re

P2n
p;q¼1apqxpxqP2n
p;q¼1bpqxpxq

( )( )
¼ extrem

apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

Re
R1

R2

� �� �
ð27Þ
According to the optimum theory, the extreme value problem R ¼ extrem
apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

fRefR1=R2gg can be decom-

posited into the real part of the quotient of the two extreme value problems

extrem
apq2aIpq

p;q¼1;2;...;2n

RefR1g þ
ffiffiffiffiffiffiffi
�1

p
extrem
apq2aIpq

p;q¼1;2;...;2n

fImfR1gg

0
B@

1
CA

8><
>:

9>=
>; and extrem

bpq2bIpq
p;q¼1;2;...;2n

RefR2g þ
ffiffiffiffiffiffiffi
�1

p
extrem
bpq2bIpq

p;q¼1;2;...;2n

fImfR2gg

0
B@

1
CA

8><
>:

9>=
>;,

i.e.
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R ¼ extrem
apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

Re
R1

R2

� �� �
¼ Re

extrem
apq2aIpq

p;q¼1;2;...;2n

RefR1g þ
ffiffiffiffiffiffiffi
�1

p
extrem
apq2aIpq

p;q¼1;2;...;2n

ImfR1g

0
B@

1
CA

extrem
bpq2bIpq

p;q¼1;2;...;2n

RefR2g þ
ffiffiffiffiffiffiffi
�1

p
extrem
bpq2bIpq

p;q¼1;2;...;2n

ImfR2g

0
B@

1
CA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð28Þ
We can know that the quantity R1 is linear function of the elements apq, p,q = 1,2, . . ., 2n. Based on
the extreme theorem in convex analysis, since the real part and imaginary part of the quantity R1 are all
convex (or concave) functions of the elements apq, p,q = 1,2, . . ., 2n, and the interval sets
aIpq ¼ ½apq; apq�; p; q ¼ 1; 2; . . . ; 2n are all convex, the extreme values of the real part and imaginary part
of R1 will be reached on the boundary matrices or vertex matrices of the interval matrices
AI ¼ ½A;A� ¼ ðaIijÞ and BI ¼ ½B;B� ¼ ðbIijÞ, i.e.
extrem
apq2aIpq

p;q¼1;2;...;2n

Re
X2n
p;q¼1

apqxpxq

( )
þ

ffiffiffiffiffiffiffi
�1

p
extrem
apq2aIpq

p;q¼1;2;...;2n

Im
X2n
p;q¼1

apqxpxq

( )0
B@

1
CA

¼ Re
X2n
p;q¼1

âspqxpxq

( )
þ

ffiffiffiffiffiffiffi
�1

p
Im

X2n
p;q¼1

âspqxpxq

( ) !
¼ Re xTÂsx

� �
þ

ffiffiffiffiffiffiffi
�1

p
Im xTÂsx
� �� �

ð29Þ
Similarly, we also have that
extrem
bpq2bIpq

p;q¼1;2;...;2n

Re
X2n
p;q¼1

bpqxpxq

( )
þ

ffiffiffiffiffiffiffi
�1

p
extrem
bpq2bIpq

p;q¼1;2;...;2n

Im
X2n
p;q¼1

bpqxpxq

( )0
B@

1
CA

¼ Re
X2n
p;q¼1

b̂
t

pqxpxq

( )
þ

ffiffiffiffiffiffiffi
�1

p
Im

X2n
p;q¼1

b̂
t

pqxpxq

( ) !
¼ Re xTB̂tx

� �
þ

ffiffiffiffiffiffiffi
�1

p
Im xTB̂tx
� �� �

ð30Þ
Thus, we can obtain
R ¼ extrem
apq2aIpq;bpq2bIpq
p;q¼1;2;...;2n

Re

P2n
p;q¼1apqxpxqP2n
p;q¼1bpqxpxq

( )( )
¼ Re

xTÂsx

xTB̂tx

( )
ð31Þ
Substitution of Eq. (31) into Eq. (26) yielding
krist ¼ kriextðhÂs; B̂tiÞ ¼ min
Si�Cn

max
x6¼0
x2Si

Re
xTÂsx

xTB̂tx

( )( )
s; t ¼ 1; 2; 3; . . . ; 22n�2n; i ¼ 1; 2; . . . ; 2n ð32Þ
Thus, the maximum and minimum values of the real parts kri, i = 1,2, . . ., 2n of the complex eigenvalues ki,
i = 1,2, . . ., 2n can, respectively, be determined by
kri ¼ krimax ¼ max
16s;t622n�2n

kristf g ¼ max
16s;t622n�2n

kriextðhÂs; B̂tiÞ
� �

; i ¼ 1; 2; . . . ; 2n ð33Þ
and
kri ¼ krimax ¼ min
16s;t622n�2n

kristf g ¼ min
16s;t622n�2n

kriextðhÂs; B̂tiÞ
� �

; i ¼ 1; 2; . . . ; 2n ð34Þ
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In the same manner, the maximum and minimum values of the imaginary parts kyi, i = 1,2, . . ., 2n of the
complex eigenvalues ki, i = 1,2, . . ., 2n, can, respectively, be determined by
kyi ¼ kyimax ¼ max
16s;t622n�2n

kyist

� �
¼ max

16s;t622n�2n
kyiextðhÂs; B̂tiÞ
� �

; i ¼ 1; 2; . . . ; 2n ð35Þ
and
kyi ¼ kyimax ¼ min
16s;t622n�2n

kyist

� �
¼ min

16s;t622n�2n
kyiextðhÂs; B̂tiÞ
� �

; i ¼ 1; 2; . . . ; 2n ð36Þ
The stationary value problem of Rayleigh�s quotient of the matrix pair hÂs; B̂ti is equivalent to its algebraic
eigenvalue problem. Thus, the eigenvalue problem corresponding to Eq. (10) reads
Âsxist ¼ kistB̂txist; s; t ¼ 1; 2; 3; . . . ; 22n�2n; i ¼ 1; 2; . . . ; 2n ð37Þ

where Âs ¼ ðâsijÞ and B̂t ¼ ðb̂tijÞ, the vector xist is the eigenvector associated with the ith eigenvalue kist.

Thus, we arrive at the following:

3.1. Vertex solution theorem

If the interval matrix AI ¼ ½A;A� ¼ ðaIijÞ is real symmetric and non-positive definite, and its boundary
matrix or vertex matrix is expressed as Âs ¼ ðâsijÞ, where âsij ¼ âsji ¼ aij (or aij), i, j = 1,2, . . ., 2n,

s = 1,2,3, . . ., 22n·2n, and the interval matrix BI ¼ ½B;B� ¼ ðbIijÞ is also real symmetric and non-positive def-

inite, and its boundary matrix or vertex matrix is expressed as B̂t ¼ ðb̂tijÞ, where b̂
t

ij ¼ b̂
t

ji ¼ bij (or bij),
i, j = 1,2, . . ., 2n, t = 1,2,3, . . ., 22n·2n. Then the real part kI

ri; i ¼ 1; 2; . . . ; 2n of the interval complex
eigenvalues kI

i ¼ kI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yi; i ¼ 1; 2; . . . ; 2n, of the interval matrix pair hAI,BIi can be determined as

follows:
kI
ri ¼ ½kri; kri�; i ¼ 1; 2; . . . ; 2n ð38Þ
where the upper bound kri; i ¼ 1; 2; . . . ; 2n, and the lower bound kri, i = 1,2, . . ., 2n of the real part of the
interval complex eigenvalues kI

i ¼ kI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yi; i ¼ 1; 2; . . . ; 2n, can be obtained by
kri ¼ arimax ¼ max
16s;t622n�2n

kristðhÂs; B̂tiÞ
� �

¼ max
16s;t622n�2n

ReðkistðhÂs; B̂tiÞÞ
� �

i ¼ 1; 2; . . . ; 2n ð39aÞ
and
kri ¼ krimin ¼ min
16s;t622n�2n

kristðhÂs; B̂tiÞ
� �

¼ min
16s;t622n�2n

ReðkistðhÂs; B̂tiÞÞ
� �

i ¼ 1; 2; . . . ; 2n ð39bÞ
and the imaginary part kI
yi; i ¼ 1; 2; . . . ; 2n of the interval complex eigenvalues kI

i ¼ kI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yi;

i ¼ 1; 2; . . . ; 2n, of the real non-positive definite interval matrix pair hAI,BIican be determined as follows
kI
yi ¼ ½kyi; kyi�; i ¼ 1; 2; . . . ; 2n ð40Þ
where the upper bound kyi; i ¼ 1; 2; . . . ; 2n, and the lower bound kyi, i = 1,2, . . ., 2n of the imaginary part of
the interval complex eigenvalues kI

i ¼ kI
ri þ

ffiffiffiffiffiffiffi
�1

p
kI
yi; i ¼ 1; 2; . . . ; 2n, can be obtained by
kyi ¼ kyimax ¼ max
16s;t622n�2n

kyistðhÂs; B̂tiÞ
� �

¼ max16s;t622n�2n ImðkistðhÂs; B̂tiÞÞ
� �

i ¼ 1; 2; . . . ; 2n ð41aÞ
and
kyi ¼ kyimin ¼ min
16s;t622n�2n

kyistðhÂs; B̂tiÞ
� �

¼ min
16s;t622n�2n

ImðkistðhÂs; B̂tiÞÞ
� �

i ¼ 1; 2; . . . ; 2n ð41bÞ
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where kist ¼ krist þ
ffiffiffiffiffiffiffi
�1

p
kyist; i ¼ 1; 2; . . . ; 2n; s; t ¼ 1; 2; 3; . . . ; 22n�2n, satisfy the following generalized eigen-

value problems:
Âsuist ¼ kistB̂tuist; s; t ¼ 1; 2; . . . ; 22n�2n; i ¼ 1; 2; . . . ; 2n ð42Þ

where uist is the eigenvector associated with the ith eigenvalue kist.
4. Interval perturbation method

By the virtue of the central notation of the interval matrix for the interval matrices AI ¼ ½A;A� and
BI ¼ ½B;B�, we have
AI ¼ Ac þ DAI; BI ¼ Bc þ DBI ð43Þ
where DAI = [�DA,DA] and DBI = [�DB,DB].
Thus, by Eq. (43), the generalized interval eigenvalue problem Eq. (10) can be written in the following

useful form:
ðAc þ DAIÞx ¼ kðBc þ DBIÞx ð44aÞ

and
yTðAc þ DAIÞ ¼ kyTðBc þ DBIÞ ð44bÞ

In this study, based on Eq. (44), we will present an interval perturbation method for the generalized interval
eigenvalue problem.

For the sake of completeness, we review the matrix perturbation theory. The purpose of the perturbation
theory is to show approximately how the eigenvalues change as the matrix changes.

Let us consider any n · n real symmetric matrix pair A0 and B0, and let us denote its eigenvalues by k0i,
i = 1,2, . . .,n, its right eigenvector by x0i, i = 1,2, . . .,n and its eigenvectors by y0i, i = 1,2, . . .,n, where the
eigenvalues and eigenvectors satisfy
Ac
0x0i ¼ k0iBc

0x0i; yT0iA
c
0 ¼ k0iyT0iB

c
0; i ¼ 1; 2; . . . ; n ð45Þ
For convenience, we shall assume that the eigenvectors x0i, i = 1,2, . . .,n and y0i, i = 1,2, . . .,n have been
normalized so as to satisfy
yT0jA
c
0x0i ¼ k0idij; yT0iB0x0i ¼ dij; i ¼ 1; 2; . . . ; n ð46Þ
where
dij ¼
1; i ¼ j

0; i 6¼ j

�
; i; j ¼ 1; 2; . . . ; n ð47Þ
If small changes are introduced to the matrices A and B, i.e.
A ¼ A0 þ dA; B ¼ B0 þ dB ð48Þ
where A0 and B0 are the unperturbed matrix pair, and dA and dB are the matrix pair representing the small
changes from A0 and B0. We shall refer to A and B as the perturbed matrix pair. The perturbed generalized
eigenvalue problem can be written in the form
ðA0 þ dAÞxi ¼ kiðB0 þ dBÞxi; yTi ðA0 þ dAÞ ¼ kiyTi ðB0 þ dBÞ; i ¼ 1; 2; . . . ; n ð49Þ
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where ki, i = 1,2, . . .,n are the perturbed eigenvalues, xi, i = 1,2, . . .,n the perturbed right eigenvectors
and yi, i = 1,2, . . .,n the perturbed left eigenvectors. As to the unperturbed problem, the eigenvalues are
assumed to be distinct and the eigenvectors bi-orthonormal, i.e.,
yTj Axi ¼ kidij; yTi Bxi ¼ dij; i ¼ 1; 2; . . . ; n ð50Þ
Assuming that A0, B0, dA, dB, k0i, i = 1,2, . . .,n, x0i, i = 1,2, . . .,n, and y0i, i = 1,2, . . .,n are known, and k0i,
i = 1,2, . . .,n are all distinct eigenvalues, one can obtain the expression of the first perturbation eigenvalues
for the perturbed matrix pair A = A0 + dA and B = B0 + dB as follows:
ki ¼ k0i þ dki ¼ k0i þ yT0iðdA� k0idBÞx0i; i ¼ 1; 2; . . . ; n ð51Þ

where
dki ¼ yT0iðdA� k0idBÞx0i ð52Þ

Since ki ¼ kir þ

ffiffiffiffiffiffiffi
�1

p
kiy ; k0i ¼ k0ir þ

ffiffiffiffiffiffiffi
�1

p
k0iy ; x0i ¼ x0ir þ

ffiffiffiffiffiffiffi
�1

p
x0iy and y0i ¼ y0ir þ

ffiffiffiffiffiffiffi
�1

p
y0iy ; i ¼ 1; 2; . . . ; n

are the complex numbers or complex vectors, and Eq. (51) can be written in real and imaginary part forms
ki ¼ kir þ
ffiffiffiffiffiffiffi
�1

p
kiy ¼ ðk0ir þ dkirÞ þ

ffiffiffiffiffiffiffi
�1

p
ðk0iy þ dkiyÞ; i ¼ 1; 2; . . . ; n ð53Þ
where
kir ¼ k0ir þ dkir; kiy ¼ k0iy þ dkiy ; i ¼ 1; 2; . . . ; n ð54Þ

where
dkir ¼ yT0irdAx0ir � yT0iydAx0iy þ k0irðyT0irdBx0ir � yT0iydBx0iyÞ � k0iyðyT0icdBx0iy þ yT0iydBx0irÞ ð55Þ
and
dkiy ¼ yT0irdAx0iy þ yT0iydAx0ir þ k0iyðyT0irdBx0ir � yT0iydBx0iyÞ þ k0irðyT0irdBx0iy þ yT0iydBx0irÞ ð56Þ
Consider the generalized interval eigenvalue problem Eq. (10). Under the small deviation amplitudes
DAI = [�DA,DA] and DBI = [�DB,DB] of the interval matrix pair AI = Ac + DAI and BI = Bc + DBI, if
we view DAI = [�DA,DA] and DBI = [�DB,DB] as interval perturbations around the matrix pair Ac and
Bc, we can solve the generalized interval eigenvalue problem by the matrix perturbation method. By the
interval mathematics or interval analysis, from the first equation of Eq. (54), we can obtain the interval
extension of the real part of the complex eigenvalues ki, i = 1,2, . . .,n
kI
ir ¼ ½kir; kir� ¼ kcir þ dkI

ir; i ¼ 1; 2; . . . ; n ð57Þ

where
dkI
ir ¼ ½dkir; dkir�
¼ yTcirDA

Ixcir � yTciyDA
Ixciy þ kcirðyTcirDBIxcir � yTciyDB

IxciyÞ � kciyðyTcicDBIxciy þ yTciyDB
IxcirÞ ð58Þ
Substituting Eq. (58) into Eq. (57), by the interval operations, gives
kI
ir ¼ ½kir; kir� ¼ ½kcir þ dkir; kcir þ dkir�; i ¼ 1; 2; . . . ; n ð59Þ
where
kir ¼ kcir þ dkir ¼ kcir þ
yTcirDAxcir � yTcirDAxcirþ

kcirðyTcirDBxcir � yTciyDBxciyÞ�
kciyðyTcirDBxciy þ yTciyDBxcirÞ

�������
�������; i ¼ 1; 2; . . . ; n ð60aÞ
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and
kir ¼ kcir þ dkir ¼ kcir �
yTcirDAxcir � yTcirDAxcirþ

kcirðyTcirDBxcir � yTciyDBxciyÞ�
kciyðyTcirDBxciy þ yTciyDBxcirÞ

�������
�������; i ¼ 1; 2; . . . ; n ð60bÞ
Let
Dkiy ¼
yTcirDAxcir � yTcirDAxcirþ

kcirðyTcirDBxcir � yTciyDBxciyÞ�
kciyðyTcirDBxciy þ yTciyDBxcirÞ

�������
������� ð61Þ
then Eq. (60) becomes
kir ¼ kcir þ Dkir; kir ¼ kcir � Dkir; i ¼ 1; 2; . . . ; n ð62Þ

In the similar manner, we also can obtain the imaginary part of the complex eigenvalues ki, i = 1,2, . . . ,n
kI
ir ¼ ½kir; kir�; i ¼ 1; 2; . . . ; n ð63Þ
where
kiy ¼ kciy þ Dkiy ; kiy ¼ kciy � Dkiy ; i ¼ 1; 2; . . . ; n ð64Þ
in which
Dkiy ¼
yTcirDAxciy � yTciyDAxcirþ

kciyðyTcirDBxcir � yTciyDBxciyÞ�
kcirðyTcirDBxciy þ yTciyDBxcirÞ

�������
������� ð65Þ
In Eqs. (62) and (64), the eigenvalues kci ¼ kcir þ
ffiffiffiffiffiffiffi
�1

p
kciy ; i ¼ 1; 2; . . . ; n and the eigenvectors

xci ¼ xcir þ
ffiffiffiffiffiffiffi
�1

p
xciy ; i ¼ 1; 2; . . . ; n and yci ¼ ycir þ

ffiffiffiffiffiffiffi
�1

p
yciy ; i ¼ 1; 2; . . . ; n satisfy
yTcjA
cxci ¼ kcidij; yTcjB

cxci ¼ dij; i ¼ 1; 2; . . . ; n ð66Þ
Thus, we arrive at the following solution theorem for the generalized interval eigenvalue problem.

4.1. Perturbation solution theorem

If kci ¼ kcir þ
ffiffiffiffiffiffiffi
�1

p
kciy ; i ¼ 1; 2; . . . ; n, are all distinct eigenvalues of the midpoint matrix pair Ac and Bc

of real symmetric non-positive definite interval matrix pair AI = Ac + D AI and BI = Bc + DBI, which
DAI = [�DA,D A] and DBI = [�DB,DB] are small uncertainty matrices, with the corresponding right eigen-
vectors xci ¼ xcir þ

ffiffiffiffiffiffiffi
�1

p
xciy ; i ¼ 1; 2; . . . ; n,and the left eigenvectors yci ¼ ycir þ

ffiffiffiffiffiffiffi
�1

p
yciy ; i ¼ 1; 2; . . . ; n.

Then the interval eigenvalues of interval matrix pair AI = Ac + DAI and BI = Bc + DBI are given by the
first-order perturbation as follows:
kI
i ¼ kI

ir þ
ffiffiffiffiffiffiffi
�1

p
kI
iy ; kI

ir ¼ ½kir; kir�; kI
iy ¼ ½kiy ; kiy �; 1; 2; . . . ; n ð67Þ
where
kir ¼ kcir þ Dkir; kir ¼ kcir � Dkir; i ¼ 1; 2; . . . ; n ð68aÞ

and
kiy ¼ kciy þ Dkiy ; kiy ¼ kciy � Dkiy ; i ¼ 1; 2; . . . ; n ð68bÞ
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where
Dkir ¼
yTcirDAxcir � yTcirDAxcirþ

kcirðyTcirDBxcir � yTciyDBxciyÞ�
kciyðyTcirDBxciy þ yTciyDBxcirÞ

�������
�������; Dkiy ¼

yTcirDAxciy � yTciyDAxcirþ
kciyðyTcirDBxcir � yTciyDBxciyÞ�
kcirðyTcirDBxciy þ yTciyDBxcirÞ

�������
������� ð69Þ
in which the eigenvalues kci ¼ kcir þ
ffiffiffiffiffiffiffi
�1

p
kciy ; i ¼ 1; 2; . . . ; n, the right eigenvectors xci ¼ xcir þ

ffiffiffiffiffiffiffi
�1

p
xciy ;

i ¼ 1; 2; . . . ; n and the left eigenvectors yci ¼ ycir þ
ffiffiffiffiffiffiffi
�1

p
yciy ; i ¼ 1; 2; . . . ; n satisfy
yTcjA
cxci ¼ kcidij; yTcjB

cxci ¼ dij; i ¼ 1; 2; . . . ; n ð70Þ
Obviously, from the Eq. (68), we can see that we only need to solve two generalized eigenvalue problems
and compute four expressions, then all interval eigenvalues of the interval matrix can be determined. Thus,
the presented solution theorem is very practical.
5. Numerical example

In this section, the proposed vertex solution theorem and interval perturbation method are applied to a
seven degree-of-freedom spring-damping-mass system with uncertainty to illustrate its effectiveness as
shown in Fig. 1. It is assumed that due to the manufacture errors or the unavoidable scatters in the material
properties, a part of physical quantities of the system exhibit some uncertainties. For convenience, all the
quantities are dimensionless. In this numerical example it is assumed that m1, m2, C1, C2, K5 and K6

are uncertain-but-bounded variables, and the interval masses are taken as mi ¼ ½mc
i � bmc

i ;m
c
i þ bmc

i �;
i ¼ 1; 2, interval damping Ci ¼ ½Cc

i � bCc
i ;C

c
i þ bCc

i �; i ¼ 1; 2, interval spring constants Ki ¼ ½Kc
i � bKc

i ;
Kc

i þ bKc
i �; i ¼ 5; 6, where mc

i ¼ 2:0ði ¼ 1; 2Þ;Cc
i ¼ 0:03ði ¼ 1; 2ÞKc

i ¼ 1:0ði ¼ 5; 6Þ and b is the variable
parameter. Other quantities are deterministic, in which masses are taken as mi = 2.0, i = 3,4,5,6,
m7 = 1.0, damping Ci = 0.02, i = 3,4Ci = 0.01, i = 5,6,7,8, spring constants Ki = 1.0, i = 3,4, . . ., 8. In
the following the regions of the real part and imaginary part of complex eigenvalues are calculated using
the presented vertex solution method and the interval perturbation method in comparison with Deif�s
solution theorem (Deif, 1991).

The real part and imaginary part of complex eigenvalues computed by the vertex solution theorem and
Deif�s solution method are listed in Tables 1 and 2 respectively when the variable parameter b is taken as
0.01. In the tables k is the number of modes; kc

r and kc
y are the real part and the imaginary part of the nom-

inal complex eigenvalue, respectively; �k
V

r and kV
r are the upper bound and lower bound of the real part of

the complex eigenvalues using the vertex solution theorem, respectively; �k
V

y and kV
y are the upper bound and

lower bound of the imaginary part of the complex eigenvalues using the vertex solution theorem, respec-
tively; �k

D

r and kD
r are the upper bound and lower bound of the real part of the complex eigenvalues obtained

by Deif�s method, respectively; �k
D

y and kD
y are the upper bound and lower bound of the imaginary part of

the complex eigenvalues obtained by Deif�s method, respectively.
From the results listed in the Tables 1 and 2, we can see that the maximum or upper bounds and the

minimum or lower bounds on the real part and the imaginary part of complex eigenvalues yielded by
the vertex solution theorem are the same as those produced by Deif�s solution theorem. Nevertheless,
Fig. 1. A spring-damping-mass system with seven degrees of freedom.



Table 1
Lower and upper bounds of the real part of complex eigenvalues (b = 0.01)

k kcr kVr
�k
V
r

�k
D
r kDr

1(2) �0.747623E�03 �0.798942E�03 �0.703841E�03 �0.798942E�03 �0.703841E�03
3(4) �0.280321E�02 �0.290725E�02 �0.270265E�02 �0.290725E�02 �0.270265E�02
5(6) �0.582838E�02 �0.596573E�02 �0.569539E�02 �0.596573E�02 �0.569539E�02
7(8) �0.108606E�01 �0.110266E�01 �0.106931E�01 �0.110266E�01 �0.106931E�01
9(10) �0.144704E�01 �0.147770E�01 �0.141723E�01 �0.147770E�01 �0.141723E�01
11(12) �0.181753E�01 �0.186466E�01 �0.177204E�01 �0.186466E�01 �0.177204E�01
13(14) �0.121144E�01 �0.121179E�01 �0.121110E�01 �0.121179E�01 �0.121110E�01

Table 2
Lower and upper bounds of the imaginary part of complex eigenvalues (b = 0.01)

k kcy kVy
�k
V
y

�k
D
y kDy

1 0.278316 0.262973 0.292354 0.262973 0.292354
2 �0.278316 �0.292354 �0.262973 �0.292354 �0.262973
3 0.556033 0.550272 0.561972 0.550272 0.561972
4 �0.556033 �0.561972 �0.550272 �0.561972 �0.550272
5 0.820673 0.817410 0.823958 0.817410 0.823958
6 �0.820673 �0.823958 �0.817410 �0.823958 �0.817410
7 1.054730 1.050560 1.058913 1.050560 1.058913
8 �1.054730 �1.058913 �1.050560 �1.058913 �1.050560
9 1.241950 1.236371 1.247545 1.236371 1.247545
10 �1.241950 �1.247545 �1.236371 �1.247545 �1.236371
11 1.367428 1.363960 1.370954 1.363960 1.370954
12 �1.367428 �1.370954 �1.363960 �1.370954 �1.363960
13 1.553723 1.552818 1.554650 1.552818 1.554650
14 �1.553723 �1.554650 �1.552818 �1.554650 �1.552818
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the presented method is superior to Deif�s method because there exists many difficulties in Deif�s solution
theorem, such as: it is quite difficult how to determine the invariance properties of the eigenvectors� com-
ponents in the interval matrix; large computational efforts etc.

Comparisons of the range curves of the real part of the complex eigenvalues of the system computed by
the vertex solution theorem and the interval perturbation method when the variable parameter b ranges

from 0.00 to 0.05 are plotted in Fig. 2(a)–(g), and the imaginary part plotted in Fig. 3(a)–(n). �k
P
r and kP

r

denote the upper bound and lower bound of the real part of the complex eigenvalues obtained by the inter-
val perturbation method, respectively; �k

P
y and kP

y denote the upper bound and lower bound of the imaginary
part of the complex eigenvalues obtained by the interval perturbation method respectively.

It can be seen from the Figs. 2 and 3 that as far as the real part and the imaginary part of complex eigen-
values is concerned, the low order eigenvalues obtained by the interval perturbation are contained by those
yielded by the vertex solution method. That is to say, the lower bounds within the vertex solution method
are smaller than those predicted by the interval perturbation method. Likewise, the upper bounds fur-
nished by the vertex solution method are larger than those yielded by the interval perturbation method.
However, for the high order eigenvalues, the region curves produced by the interval perturbation method
gradually approach those obtained by the vertex solution method. As far the imaginary part of complex
eigenvalues, sometimes they even arrive to coincidence; sometimes instead the width of the region bounds
obtained by the interval perturbation method is slightly larger than that yielded by the vertex solution
method.
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Fig. 2. Comparison of the region curves of the real part of complex eigenvalues yielded by the vertex solution theorem and the interval
perturbation method.
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Fig. 3. Comparison of the region curves of the imaginary part of complex eigenvalues yielded by the vertex solution theorem and the
interval perturbation method.
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6. Conclusions

In this study, based on the interval mathematics and the optimization theory, an exact solution
method—the vertex solution theorem and an interval perturbation method were presented for determining
the range of complex eigenvalues.
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Fig. 3 (continued)
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From the proof of the vertex solution theorem we can see that the computational efforts will grow shar-
ply with the degree of uncertainty increasing. It shows the inefficiency of such approach for the solution of
practical application. As we known that the vertex (exact) solution of the linear interval systems is NP-hard
proved by Rohn and Kreinovich (1995), the vertex solution theorem for the generalized eigenvalue problem
of interval matrices is also NP-hard. Nevertheless, the aim of this paper is mainly to provide a proof for the
vertex solution theorem for the vibration frequencies of systems with uncertainty. Although such a formu-
lation may not represent a significant contribution toward the advancement of engineering sciences, the ver-
tex solution theorem can be used as a way to verify the sharpness of non NP-hard approximate solutions to
the systems with interval coefficient matrices.

The generalized interval complex eigenvalue problem of interval matrices is by far more intricate than
the generalized interval real eigenvalue problem of interval matrices. If one views the uncertainty of the
interval matrix as a perturbation around the midpoint of the interval matrix, one can solve the generalized
interval eigenvalue problem by the perturbation method. By applying the interval extension to the matrix
perturbation formulation, we present the interval perturbation approximating formula for estimating the
upper and lower bounds on the set of all possible eigenvalues of the generalized interval complex eigenvalue



Z. Qiu, X. Wang / International Journal of Solids and Structures 42 (2005) 2883–2900 2899
problem of the real symmetric non-positive definite interval matrix. Weak application condition and
inexpensive computational efforts are mainly characteristics of the presented interval perturbation
method.
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Appendix A. Minmax theorem for the generalized complex eigenvalues

Let Sk,1 6 k 6 2n denote an arbitrary k-dimensional subspace of complex space C2n, and A and B be the
2n · 2n-dimensional real symmetric non-positive definite matrices with 2n complex eigenvalues
k1 6 k2 6 � � � 6 k2n. Let the real parts and imaginary parts of the complex eigenvalues of the matrix pair
hA,Bi be ordered in increasing size, kr1 6 kr2 6 � � � 6 kr2n and ky1 6 ky2 6 � � � 6 ky2n, and k be an integer
with 1 6 k 6 2n. Then, for the real part of complex eigenvalues
krk ¼ min
w1;w2;...;w2n�k2C2n

max
x 6¼0;x2C2n

x?w1;w2;...;w2n�k

Re
xTAx
xTBx

� �
; k ¼ 1; 2; . . . ; 2n ðA:1Þ
and
krk ¼ max
w1;w2;...;wk�12C2n

min
x 6¼0;x2C2n

x?w1;w2;...;wk�1

Re
xTAx
xTBx

� �
; k ¼ 1; 2; . . . ; 2n ðA:2Þ
and for the imaginary part of complex eigenvalues
kyk ¼ min
w1;w2;...;w2n�k2C2n

max
x6¼0;x2C2n

x?w1;w2;...;w2n�k

Im
xTAx
xTBx

� �
; k ¼ 1; 2; . . . ; 2n ðA:3Þ
and
kyk ¼ max
w1;w2;...;wk�12C2n

min
x6¼0;x2C2n

x?w1;w2;...;wk�1

Im
xTAx
xTBx

� �
; k ¼ 1; 2; . . . ; 2n ðA:4Þ
Proof. Only Eq. (A.1) is considered, and the proofs for Eqs. (A.2)–(A.4) are similar.
Write A = (XT)�1KX�1 and B = (X�1)T X�1 with K = diag(k1,k2, . . . ,k2n), and let 1 6 k 6 2n. If x 5 0,
then
xTAx
xTBx

¼ ðX�1xÞTKðX�1xÞ
xTBx

¼ ðX�1xÞTKðX�1xÞ
ðX�1xÞTðX�1xÞ

ðA:5Þ
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and {X�1x : x2C2n and x 5 0} = {y 2 C2n : y 5 0}. Thus, if w1,w2,. . .,w2n�k 2 C2n are given, we have
max
x6¼0

x?w1;w2;...;w2n�k

Re
xTAx
xTBx

� �
¼ max

y 6¼0

y?X�1w1;X�1w2;...;X�1w2n�k

Re
yTKy
yTy

� �

¼ max
yTy¼1

y?X�1w1;X�1w2;...;X�1w2n�k

Re
X2n
i¼1

ki yij j2
( )

P max
yTy¼1

y?X�1w1;X�1w2;...;X�1w2n�k
y1¼y2¼���¼y2n�k¼0

Re
X2n
i¼1

ki yij j2
( )

¼ max
ykj j2þ ykþ1j j2þ���þ y2nj j2¼1

y?X�1w1;X�1w2;...;X�1w2n�k

Re
X2n
i¼1

ki yij j2
( )

P krk ðA:6Þ
This shows that
max
x 6¼0;x2C2n

x?w1;w2;...;w2n�k

Re
xAx
xBx

� �
P kk ðA:7Þ
for any 2n � k vectors w1,w2, . . .,w2n�k. This inequality Eq. (A.7) becomes an equality if we choose
wi = w2n�i+1. Therefore
min
w1;w2;...;w2n�k

max
x6¼0

x?w1;w2;...;w2n�k

Re
xAx
xBx

� �
¼ krk ðA:8Þ
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